Search results for " mesoangioblasts"

showing 10 items of 12 documents

Mouse A6 stem cells release active FGF-2 into extracellular space through plasma membrane vesicles

2007

In this study, mouse mesoangioblasts were seeded onto bidimensional matrices within three-dimensional porous scaffolds of poly (L-lactic acid) (PLLA), in the presence or absence of a type I collagen coating. The cells were observed under a scanning electron microscope and tested for their adhesion, survival and proliferation. Immunolocalization of heat shock protein (Hsp) 70, an abundant and ubiquitous intracellular protein in these cells, was also performed in sectioned cell-containing scaffolds under a confocal fluorescence microscope to determine if in situ analysis of intracellular constituents was feasible. The data show that PLLA films allow direct cell adhesion and represent an optim…

mouse mesoangioblasts
researchProduct

Mouse mesoangioblast behaviour when subjected to cellular stress

2009

cellular stress stem cells mouse mesoangioblastsSettore BIO/06 - Anatomia Comparata E Citologia
researchProduct

MMP2 synthesis in mouse mesoangioblast stem cells is highly regulated

2012

MMP2 stem cells mesoangioblastsSettore BIO/06 - Anatomia Comparata E Citologia
researchProduct

Paracrine roles of extracellular vesicles released by mouse mesoangioblasts

2017

Extracellular vesicles (EV) represent an important mediator of cell-to-cell communication and are involved in both autocrine and paracrine signaling, with a critical role in a number of physiological and pathological conditions.1 The bioactive molecules contained within EV simultaneously activate several different pathways resulting in the synergistic stimulation of target cells. The discovery and characterization of EV have added a novel understanding to regenerative medicine, namely the finding that stem cells are an abundant source of EV.1-2 A6 mouse mesoangioblasts, vessel-associated multipotent progenitor stem cells that are capable of differentiating into different mesodermal cell typ…

extracellular vesicles mouse mesoangioblasts stem cellsSettore BIO/06 - Anatomia Comparata E Citologia
researchProduct

Paracrine effect of membrane vesicles released by mouse mesoangioblast stem cells on non correlated cell types

2016

Introduction Mouse mesoangioblasts are vessel-associated multipotent progenitor stem cells, which are able to differentiate into different mesodermal cell types. In our previous paper we have demonstrated that these cells are able to shed in the extracellular environment membrane vesicles (EV), which contain both structural proteins and biological factors such as FGF2 and the two gelatinases MMP2/9. EV represent an important mediator of cell-to-cell communication and are involved in both autocrine and paracrine signalling. Interestingly, there is a bidirectional signalling exchange between stem cell EV and damaged cells. In particular, EV from injured cells can reprogram stem cells to acqui…

Stem cells mesoangioblasts membrane vesicles migration. macrophages endothelial cells.
researchProduct

Hsp70 level regulates MMP2 expression in mesoangioblast stemj cells

2013

Hsp70 mesoangioblasts stem cells MMP2
researchProduct

Paracrine effect of membrane vesicles released by mouse mesoangioblast stem cells

2016

Introduction: Mouse mesoangioblasts are vessel-associated multipotent progenitor stem cells, which are able to differentiate into different mesodermal cell types. In our previous paper, we have demonstrated that mesoangioblasts are able to shed in the extracellular environment membrane vesicles (EVs), which contain both structural proteins and biological factors such as FGF2 and the two gelatinases MMP2/9. We investigated whether these EV interact in a paracrine way with other cell types different from mesoangioblasts, and eventually the effects of this interaction. Methods: Mesoangioblast EVs were collected from conditioned media by ultracentrifugation. Total mRNAs from mesoangioblasts and…

membrane vesicles stem cells mesoangioblasts
researchProduct

Stress response in mesoangioblast stem cells

2006

Stem cells are presumed to survive various stresses, since they are recruited to areas of tissue damage and regeneration, where inflammatory cytokines and cytotoxic cells may result in severe cell injury. We explored the ability of mesoangioblasts to respond to different cell stresses such as heat, heavy metals and osmotic stress, by analyzing heat shock protein (HSP)70 synthesis as a stress indicator. We found that the A6 mesoangioblast stem cells constitutively synthesize HSP70 in a heat shock transcription factor (HSF)-independent way. However, A6 respond to heat shock and cadmium treatment by synthesizing HSP70 over the constitutive expression and this synthesis is HSF1 dependent. The e…

Chloramphenicol O-AcetyltransferaseHot TemperatureOsmotic shockRecombinant Fusion ProteinsBlotting WesternHypertonic SolutionsElectrophoretic Mobility Shift AssayBiologyResponse ElementsTransfectionMesodermMiceSTRESS RESPONSE STEM CELLS MOUSE MESOANGIOBLASTS.Heat Shock Transcription FactorsHeat shock proteinMetals HeavyAnimalsRNA MessengerHSF1Promoter Regions GeneticMolecular BiologyCells CulturedMesoangioblastHSC70 Heat-Shock ProteinsCell BiologyTransfectionHematopoietic Stem CellsMolecular biologyCell biologyHsp70Heat shock factorDNA-Binding ProteinsGene Expression RegulationStem cellTranscription Factors
researchProduct

Porous PLLA scaffolds are optimal substrates for internal colonization by A6 mesoangioblasts and immunocytochemical analyses

2009

In the present paper, mouse mesoangioblasts were seeded onto bidimensional matrices and within three-dimensional porous scaffolds of poly(L-lactic acid) (PLLA), in the presence or absence of type I collagen coating, observed under the scanning electron microscope, and tested for their adhesion, survival and proliferation. Immunolocalization of Hsp70, an abundant and ubiquitous intracellular protein in these cells, was also performed in sectioned cell-containing scaffolds under the confocal fluorescence microscope to check whether "in situ" analysis of intracellular constituents was feasible. The data obtained show that PLLA films allow direct cell adhesion and represent an optimal support f…

PLLA mesoangioblastsSettore BIO/06 - Anatomia Comparata E Citologia
researchProduct

Autophagy and apoptosis regolate survival of mesoangioblast stem cells subjected to oxidative stress

2012

Autophagy apoptosis mesoangioblasts oxidative stressSettore BIO/06 - Anatomia Comparata E Citologia
researchProduct